Skip to content

# BASIC OPERATION OF INTEGERS

Table of Contents

## Definition of Integer

An integer is any positive or negative whole number

Example:

Simplify the following

(+8) + (+3)      (ii) (+9) –  (+4)

Solution

(+8) + (+3) = +11                   (ii) (+9) – (+4) = 9-4 = +5 or 5

## Evaluation

Simplify the following

(+12) (+7)                (ii) 7-(-3)-(-2)

## Indices

The plural of index is indices

10 x 10 x 10= 103 in index form, where 3 is the index or power of 10. P5=p x pxpxpxp. 5 is the power or index of p in the expression P5.

## Laws of Indices

1. Multiplication law:

ax x ay = ax+y

E.g. a5xa3=a x a x a x a x a x a x a x a =a8

y1 x y4=y 1+4

= y5

ax a5 = a3 + 5 = a8

4c4 x 3c2

= 4 x 3 x c4 x c2 =12 x c4+2=12c6

### Class work

Simplify the following

(a) 103 x 104              (b) 3 x 106 x 4 x 102       (c) p3 x p          (d) 4f3 x 5f7

## Division law

(1)  ax ÷ ay = ax ÷ ay = ax-y

Example

Simplify the following

• a7÷a3=a x a x a x a x a x a x a ÷ a x a x a

a7-3=a4

(2) 106÷103=106÷103=106-3=103

See also  ARITHMETIC PROGRESSION (A. P)

(3) 10a7÷2a2=10a7÷2a2=5a7-2=5a5

### Class work

Simplify the following

1. 105÷103 2.  51m9÷3m              (3) 8×109÷4×106

## Zero indexes

ax ÷ ax =1

By division law ax-x=a

a=1

E.g. 1000 =1

50=1

## Negative index

a0 ÷ ax = 1/ax

But by division law, a0-x=a-x

Therefore, a-x=1/ax

Example

1. Simplify (i) b-2 (ii) 2-3

Solution

b-2 = 1/ b2               (ii) 2-3 = 1/23     = 1/2x2x2 = 1/8

### Class work

(1) 10-2       (2) d0 x d4 x d-2                (3) a-3÷a-5         (4)  (1/4)-2

(5)     [am]n = amxn = amn.

[Power of index]

E.g. [a2]4= x a2 x a2 x a2 = a x a x a x a x a x a x a x a=a8

Therefore. a2×4=a8.

(6)   [mn] a=m ax na = mana. e.g. [4+2x] 2=42+22xx2 =

16+4x2=4[4+1xx2] =4[4+x2].

7      Fractional indexes

am/n   =a1/n xm=n√ am

Example

(a1/2)2 =a2/2=a1=a

(√a)2=√a x √a =√a x a=√a2=ae.g321/5=5

√321

1. 323/5 = 5√25×3 = 23 =2x2x2 = 8
2. 272/3=3√272 = 32 = 3x3x3 = 9
3. 4-3/2 = √1/43= 1/23
4. (0001)3

=1×10-3

=(10-3)3=10-3×3=10-9

=        1           .

1000000000

See also  WHOLE NUMBERS

=0.000000001

1. (am)p/q=amp=√(a)p

e.g. (162)3/4=√ (162)3

= (22)3

(4)3=4x4x4 = 64

1. Equator of power for equal base

Ax=Ay That is x = y

## WEEKEND ASSIGNMENT

1. Simplify (+13)  (+6)

(a)7  (b) -7   (c) 19    (d) 8

1. Simplify (+11)  (+6)- (-3)

(a)7   (b)8      (c)9     (d)10

1. Simplify 5x3 x 4x7 (a) 20x4 (b) 20x10            (c) 20x7           (d) 57x10
2. Simplify 10a8 ÷ 5a6 (a) 2a2 (b) 50a2 (c) 2a14                (d) 2a48
3. Simplify r7 ÷ r7 (a) 0 (b) 1     (c) r14    (d) 2r7

## THEORY

1. Simplify
• 5y5 x 3y3
• 24×8

6x

1. Simplify (1/2)-3

See also

WEIGHT

VOLUME OF CYLINDER

AREA OF RIGHT ANGLED TRIANGLE

PROFIT AND LOSS PERCENT

SIMPLE INTERREST

SUBSCRIBE BELOW FOR A GIVEAWAY

Building & maintaining an elearning portal is very expensive, that is why you see other elearning websites charge fees. Help to keep this learning portal free by telling mum or dad to donate or support us. Thank you so much. Click here to donate

error: Content is protected !!